- 1 Solve the differential equation $\frac{dy}{dx} = \frac{y}{x(x+1)}$, given that when x=1, y=1. Your answer should express y explicitly in terms of x. [8]
- 2 Water is leaking from a container. After *t* seconds, the depth of water in the container is *x* cm, and the volume of water is $V \text{ cm}^3$, where $V = \frac{1}{3}x^3$. The rate at which water is lost is proportional to *x*, so that $\frac{dV}{dt} = -kx$, where *k* is a constant.

(i) Show that
$$x \frac{\mathrm{d}x}{\mathrm{d}t} = -k$$
. [3]

Initially, the depth of water in the container is 10 cm.

- (ii) Show by integration that $x = \sqrt{100 2kt}$. [4]
- (iii) Given that the container empties after 50 seconds, find k. [2]

Once the container is empty, water is poured into it at a constant rate of 1 cm^3 per second. The container continues to lose water as before.

- (iv) Show that, t seconds after starting to pour the water in, $\frac{dx}{dt} = \frac{1-x}{x^2}$. [2]
- (v) Show that $\frac{1}{1-x} x 1 = \frac{x^2}{1-x}$.

Hence solve the differential equation in part (iv) to show that

$$t = \ln\left(\frac{1}{1-x}\right) - \frac{1}{2}x^2 - x.$$
 [6]

(vi) Show that the depth cannot reach 1 cm.

[1]

- 3 A curve satisfies the differential equation $\frac{dy}{dx} = 3x^2y$, and passes through the point (1, 1). Find y in terms of x. [4]
- 4 A skydiver drops from a helicopter. Before she opens her parachute, her speed $v \,\mathrm{m \, s^{-1}}$ after time *t* seconds is modelled by the differential equation

$$\frac{\mathrm{d}v}{\mathrm{d}t} = 10\mathrm{e}^{-\frac{1}{2}t}.$$

When t = 0, v = 0.

(i) Find v in terms of t.

[4]

(ii) According to this model, what is the speed of the skydiver in the long term? [2]

She opens her parachute when her speed is 10 m s^{-1} . Her speed *t* seconds after this is $w \text{ m s}^{-1}$, and is modelled by the differential equation

$$\frac{\mathrm{d}w}{\mathrm{d}t} = -\frac{1}{2}(w-4)(w+5)$$

(iii) Express $\frac{1}{(w-4)(w+5)}$ in partial fractions. [4]

(iv) Using this result, show that
$$\frac{w-4}{w+5} = 0.4e^{-4.5t}$$
. [6]

(v) According to this model, what is the speed of the skydiver in the long term? [2]

- **5** Data suggest that the number of cases of infection from a particular disease tends to oscillate between two values over a period of approximately 6 months.
 - (a) Suppose that the number of cases, *P* thousand, after time *t* months is modelled by the equation $P = \frac{2}{2 \sin t}$ Thus, when t = 0, P = 1.
 - (i) By considering the greatest and least values of $\sin t$, write down the greatest and least values of *P* predicted by this model. [2]
 - (ii) Verify that *P* satisfies the differential equation $\frac{dP}{dt} = \frac{1}{2}P^2 \cos t.$ [5]
 - (b) An alternative model is proposed, with differential equation

$$\frac{dP}{dt} = \frac{1}{2}(2P^2 - P)\cos t.$$
 (*)

As before, P = 1 when t = 0.

- (i) Express $\frac{1}{P(2P-1)}$ in partial fractions. [4]
- (ii) Solve the differential equation (*) to show that

$$\ln\left(\frac{2P-1}{P}\right) = \frac{1}{2}\sin t.$$
 [5]

This equation can be rearranged to give $P = \frac{1}{2 e^{\frac{1}{2} \sin t}}$.

(iii) Find the greatest and least values of *P* predicted by this model. [4]

- 6 (a) The number of bacteria in a colony is increasing at a rate that is proportional to the square root of the number of bacteria present. Form a differential equation relating x, the number of bacteria, to the time t. [2]
 - (b) In another colony, the number of bacteria, *y*, after time *t* minutes is modelled by the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{10000}{\sqrt{y}}.$$

Find y in terms of t, given that y = 900 when t = 0. Hence find the number of bacteria after 10 minutes. [6]