1 Solve the differential equation $\frac{d y}{d x}=\frac{y}{x(x+1)}$, given that when $x=1, y=1$. Your answer should express y explicitly in terms of x.
[8]

2 Water is leaking from a container. After t seconds, the depth of water in the container is $x \mathrm{~cm}$, and the volume of water is $V \mathrm{~cm}^{3}$, where $V=\frac{1}{3} x^{3}$. The rate at which water is lost is proportional to x, so that $\frac{\mathrm{d} V}{\mathrm{~d} t}=-k x$, where k is a constant.
(i) Show that $x \frac{\mathrm{~d} x}{\mathrm{~d} t}=-k$.

Initially, the depth of water in the container is 10 cm .
(ii) Show by integration that $x=\sqrt{100-2 k t}$.
(iii) Given that the container empties after 50 seconds, find k.

Once the container is empty, water is poured into it at a constant rate of $1 \mathrm{~cm}^{3}$ per second. The container continues to lose water as before.
(iv) Show that, t seconds after starting to pour the water in, $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{1-x}{x^{2}}$.
(v) Show that $\frac{1}{1-x}-x-1=\frac{x^{2}}{1-x}$.

Hence solve the differential equation in part (iv) to show that

$$
\begin{equation*}
t=\ln \left(\frac{1}{1-x}\right)-\frac{1}{2} x^{2}-x \tag{6}
\end{equation*}
$$

(vi) Show that the depth cannot reach 1 cm .

3 A curve satisfies the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2} y$, and passes through the point $(1,1)$. Find y in terms of x.

4 A skydiver drops from a helicopter. Before she opens her parachute, her speed $v \mathrm{~m} \mathrm{~s}^{-1}$ after time t seconds is modelled by the differential equation

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}=10 \mathrm{e}^{-\frac{1}{2} t}
$$

When $t=0, v=0$.
(i) Find v in terms of t.
(ii) According to this model, what is the speed of the skydiver in the long term?

She opens her parachute when her speed is $10 \mathrm{~m} \mathrm{~s}^{-1}$. Her speed t seconds after this is $w \mathrm{~m} \mathrm{~s}^{-1}$, and is modelled by the differential equation

$$
\frac{\mathrm{d} w}{\mathrm{~d} t}=-\frac{1}{2}(w-4)(w+5)
$$

(iii) Express $\frac{1}{(w-4)(w+5)}$ in partial fractions.
(iv) Using this result, show that $\frac{w-4}{w+5}=0.4 \mathrm{e}^{-4.5 t}$.
(v) According to this model, what is the speed of the skydiver in the long term?

5 Data suggest that the number of cases of infection from a particular disease tends to oscillate between two values over a period of approximately 6 months.
(a) Suppose that the number of cases, P thousand, after time t months is modelled by the equation $P=\frac{2}{2-\sin t}$. Thus, when $t=0, P=1$.
(i) By considering the greatest and least values of $\sin t$, write down the greatest and least values of P predicted by this model.
(ii) Verify that P satisfies the differential equation $\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{1}{2} P^{2} \cos t$.
(b) An alternative model is proposed, with differential equation

$$
\begin{equation*}
\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{1}{2}\left(2 P^{2}-P\right) \cos t \tag{*}
\end{equation*}
$$

As before, $P=1$ when $t=0$.
(i) Express $\frac{1}{P(2 P-1)}$ in partial fractions.
(ii) Solve the differential equation (*) to show that

$$
\begin{equation*}
\ln \left(\frac{2 P}{} \quad 1\right)=\frac{1}{2} \sin t \tag{5}
\end{equation*}
$$

This equation can be rearranged to give $P=\frac{1}{2 \mathrm{e}^{\frac{1}{2} \sin t}}$.
(iii) Find the greatest and least values of P predicted by this model.

6 (a) The number of bacteria in a colony is increasing at a rate that is proportional to the square root of the number of bacteria present. Form a differential equation relating x, the number of bacteria, to the time t.
(b) In another colony, the number of bacteria, y, after time t minutes is modelled by the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{10000}{\sqrt{y}}
$$

Find y in terms of t, given that $y=900$ when $t=0$. Hence find the number of bacteria after 10 minutes.

